

Description:

Each OPB680, OPB680-20 and OPB690Z optical flag switch consists of an infrared emitting diode in a molded plastic housing. The phototransistor has an enhanced low current roll-off that improves contrast ratio and immunity to background irradiance.

A lever arm actuated flag interrupts the light beam and switches the output between states that can readily drive logic gates. This can be actuated by passing a paper sheet without damaging the paper's edge.

OPB680-20 offers increased lever operating force that prevents false triggering due to incidental contact in door sensing and other heavy-duty applications.

OPB690Z is designed to easily snap mount into a $0.037 " \pm 0.001^{\prime \prime}$ ($0.940 \mathrm{~mm} \pm 0.025 \mathrm{~mm}$) thick material with a rectangular opening of $0.320 " \pm 0.003^{\prime \prime} \times 0.472^{\prime \prime}(8.128 \mathrm{~mm} \times 11.989 \mathrm{~mm})$ minimum. Insertion into the punched side of metal is recommended.

Customized lever arms and spring torques can be designed for specific applications for each of the devices.
Custom electrical, wire, cabling and connectors are available. Contact your local representative or OPTEK for more information.

Applications:

- Mechanical switch replacement
- Speed indication (tachometer)
- Mechanical limit indication
- Edge sensing

Ordering Information					
Part Number	LED Peak Wavelength	Sensor	Flag Travel Degrees Max	Lead Length / Spacing or Connector	
OPB680		Rbe	51°	$0.100^{\prime \prime} / 0.275^{\prime \prime}$	
OPB680-20	890 nm	Rransistor	70°	Molex 5102	

RoHS
OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

OPB680, OPB680-20

Pin \#	Description	Pin \#	Description
1	Anode	3	Collector
4	Cathode	2	Emitter

[MILLIMETERS]
DIMENSIONS ARE IN:
inches

Notes:
(1) For OPB680 and OPB680-20, the "on" condition exists when the lever arm is in the rest position (16 from vertical).
(2) For OPB680 and OPB680-20, the "off" condition exists when the lever arm is deflected clockwise $8^{\circ} \pm 3^{\circ}$ from the rest position $\left(16^{\circ}\right.$ from vertical). Maximum allowable deflection is 35° from the rest position.

OPB690Z

Notes:
(1) For OPB690Z, the "on" condition exists when the lever arm is deflected clockwise $18^{\circ}+/-3^{\circ}$ from the rest position (20° from vertical).
(2) For OPB690Z, the "off" position exists when the lever arm is in the rest position (20° from vertical).
(3) For OPB690Z, from the rest position to the switch point the lever torque measured at the end of the arm is 1.5 grams maximum.

Slotted Optical Flag Switch OPB680, OPB680-20, OPB690Z

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Storage \& Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Lead Soldering Temperature $[1 / 16 \text { inch }(1.6 \mathrm{~mm}) \text { from the case for } 5 \text { sec. with soldering iron }]^{(1)}$	$260^{\circ} \mathrm{C}$

Input Diode

Forward DC Current	50 mA
Peak Forward Current $(1 \mu$ s pulse width, 300 pps$)$	3 A
Reverse DC Voltage	3 V
Power Dissipation ${ }^{(2)}$	100 mW

Output Phototransistor

Collector-Emitter Voltage	30 V
Emitter Reverse Current	10 mA
Collector DC Current	30 mA
Power Dissipation $^{(3)}$	200 mW

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS

Input Diode (see OP245 for additional information)

V_{F}	Forward Voltage	-	-	1.6	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
I_{R}	Reverse Current	-	-	100	$\mu \mathrm{~A}$	$\mathrm{~V}_{\mathrm{R}}=3 \mathrm{~V}$

Output Phototransistor (See OP755 for additional information)

$\mathrm{V}_{\text {(BR)CEO }}$	Collector-Emitter Breakdown Voltage	30	-	-	V	$\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
$\mathrm{BV}_{\text {ECO }}$	Emitter-Collector Breakdown Voltage	4.0	-	-	V	$\mathrm{I}_{\mathrm{EC}}=100 \mu \mathrm{~A}$
$\mathrm{I}_{\text {CEO }}$	Collector-Emitter Dark Current	-	-	100	$\mu \mathrm{~A}$	$\mathrm{~V}_{\text {CE }}=5 \mathrm{~V}$

Coupled

$\mathrm{V}_{\text {SAT }}$	Saturation Voltage	-	-	0.4	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{C}(\mathrm{ON})}$	On-State Collector Current	600	-	-	$\mu \mathrm{A}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$, unblocked
		-	-	150		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}$, blocked

Mechanical

Fop	Operating Force OPB680, OPB690Z OPB680-20	-	-	1.5	g	Measured at end of lever
Cycles	Operating Cycles	100 K	-	-	cycles	-

Notes:
(1) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering. Maximum 20 grams force may be applied to leads when soldering (OPB680, OPB680-20).
(2) Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(3) Derate linearly $2.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

